home *** CD-ROM | disk | FTP | other *** search
/ Super CD / Super CD.iso / educ / cal / exfile.tru < prev    next >
Encoding:
Text File  |  1990-03-21  |  4.1 KB  |  1 lines

  1. MENU|1|7|BOX|1|x^3 - 3x^2 + 2|BOX|2|-2|4|MENU|2|3|MENU|1|3|MENU|1|5|BOX|3|-2|4|.5|END|MENU|1|7|BOX|1|x^4 - 5x^3 + 4|BOX|2|-3|6|MENU|2|3|MENU|1|3|MENU|1|3|MENU|2|5|BOX|4|-3|6|-70|70|END|MENU|1|7|BOX|1|sin(x/2)|BOX|2|-2pi|2pi|MENU|2|3|MENU|1|3|MENU|1|3|END|MENU|1|7|BOX|1|sin(x) + cos(x/2)|BOX|2|-2pi|2pi|MENU|2|3|MENU|1|3|MENU|1|3|MENU|1|4|MENU|1|4|END|MENU|1|7|BOX|1|tan(x)|BOX|2|-pi/2|3pi/2|MENU|2|3|MENU|1|3|MENU|1|3|MENU|2|6|ZOOM|-1|1|-2|2|END|MENU|1|7|BOX|1|atn(x)|BOX|2|-3|3|MENU|2|3|MENU|1|3|MENU|1|3|END|MENU|1|7|BOX|1|exp(-x/2) * cos(x)|BOX|2|-4|4|MENU|2|3|MENU|1|3|MENU|1|3|MENU|2|5|BOX|4|-4|4|-6|4|END|MENU|1|7|BOX|1|sin(nx + c)|BOX|2|0|1|BOX|2|-pi|pi|MENU|1|6|BOX|2|0|2|MENU|1|6|BOX|2|pi/4|2|END|MENU|1|7|BOX|1|1/(x^2+4)|BOX|2|-2|2|MENU|2|3|MENU|1|4|MENU|2|5|BOX|4|-2|2|-.5|.5|MENU|1|4|END|MENU|1|1|BOX|2|sin(x)/x|0|END|MENU|1|1|BOX|2|log(x)/(x-1)|1|END|MENU|1|1|BOX|2|1/x|0|END|MENU|1|1|BOX|2|sqr(x)|0|END|MENU|1|1|BOX|2|sqr(abs(x))|0|END|MENU|1|1|BOX|2|abs(x)/x|0|END|MENU|1|1|BOX|2|(x-2)/(x^2-4)|2|PAUSE|MENU|1|3|BOX|1|-2|END|MENU|1|1|BOX|2|exp(x)|0|END|MENU|1|1|BOX|2|sin(x)|pi/2|MENU|1|3|BOX|1|pi/3|MENU|1|3|BOX|1|pi/4|END|MENU|1|1|BOX|2|x^3 - 3x^2 + 2|1|PAUSE|MENU|1|5|BOX|4|.5|1.5|-1.5|1.5|END|MENU|1|1|BOX|2|tan(x)|pi/2|END|MENU|1|1|BOX|2|sqr(x)|0|END|MENU|1|1|BOX|1|x^3 - 3x^2 + 2|BOX|2|-1|3|END|MENU|1|1|BOX|1|x^4 - 5x^3 + 4|BOX|2|-1|2|MESSAGE|1|Both maximum and minimum at an end point.|MENU|1|3|BOX|2|-1|5|MESSAGE|1|Minimum now at an interior point.|END|MENU|1|1|BOX|1|sin(x) + cos(kx)|BOX|1|1|BOX|2|-2pi|2pi|MENU|1|4|BOX|1|1/2|BOX|2|-2pi|2pi|MENU|1|4|BOX|1|1/4|BOX|2|-2pi|2pi|END|MENU|1|1|BOX|1|sin(x) + .5cos(2x)|BOX|2|0|2pi|MESSAGE|2|Let us see the x-values|expressed in terms of pi.|MENU|1|5|END|MENU|1|1|BOX|1|exp(-x/2) * cos(x)|BOX|2|-4|4|END|MENU|1|1|BOX|1|x * exp(-x)|BOX|2|-1|3|END|MENU|1|1|BOX|1|x^x|BOX|2|.1|1|END|MENU|1|8|MENU|1|1|BOX|2|x - 3sin(x)|4|OPTION|1|OPTION|1|OPTION|1|OPTION|1|OPTION|1|END|MENU|1|9|MENU|1|1|BOX|2|x^3 - 3x^2 + 2|-2|PAUSE|MENU|1|3|BOX|1|.5|PAUSE|MENU|1|3|BOX|1|3|MESSAGE|1|We have now found all 3 roots.|MENU|1|3|BOX|1|0|MESSAGE|2|The derivative is 0.|Cannot start here.|END|MENU|1|9|MENU|1|1|BOX|2|cos(x) - sin(2x)|2|MENU|1|5|PAUSE|MENU|1|3|BOX|1|pi|END|MENU|1|9|MENU|1|1|BOX|2|1/x|1|END|MENU|1|1|BOX|1|x^3 - 3x^2 + 2|BOX|2|-2|2|END|MENU|1|1|BOX|1|sin(x) + cos(x/2)|BOX|2|-2pi|2pi|PAUSE|MENU|1|3|BOX|2|-2pi|4pi/3|END|MENU|1|1|BOX|1|1/x|BOX|2|1|10|MESSAGE|1|The area is log(10).|END|MENU|1|1|BOX|1|sqr(x)|BOX|2|1|9|END|MENU|1|1|BOX|1|2 / (x^2 + 1)|BOX|2|-1|1|MESSAGE|1|Do you recognize the answer?|END|MENU|1|1|BOX|1|(x^2+3x-4) / (x^2+4x+3) |BOX|2|0|3|END|MENU|1|1|BOX|1|cos(x) / (x+3)|BOX|2|0|5|MENU|1|4|MESSAGE|2|This uses 10 intervals.|We will now try 20.|MENU|1|5|BOX|1|20|END|MENU|1|1|BOX|2|sin(x)|x|BOX|1|0|END|MENU|1|1|BOX|2|x^2|cos(x) - 1|BOX|1|0|END|MENU|1|1|BOX|2|log(x)|x - 1|BOX|1|1|END|MENU|1|1|BOX|2|x^2 - 4|x + 2|BOX|1|-2|END|MENU|1|1|BOX|2|cos(x) - 1 + .5x^2|x^4|BOX|1|0|END|MENU|1|1|BOX|2|x^2 - 1|(x-1)^2|BOX|1|1|END|MENU|1|1|BOX|2|t^2|t^3|BOX|2|0|2|END|MENU|1|1|BOX|2|t cos(t)|t sin(t)|BOX|2|0|2pi|PAUSE|MENU|1|3|BOX|2|0|6pi|END|MENU|1|1|BOX|2|cos(t)|sin(t)|BOX|2|0|2pi|END|MENU|1|1|BOX|2|tan(t)|sec(t)|BOX|2|0|2pi|END|MENU|1|1|BOX|2|cos(kt)|sin(nt)|BOX|2|1|2|BOX|2|0|2pi|MENU|1|4|BOX|2|3|2|BOX|2|0|2pi|MENU|1|4|BOX|2|3|5|BOX|2|0|2pi|END|MENU|1|1|BOX|2|(1-cos(t)) * cos(t)|(1-cos(t)) * sin(t)|BOX|2|0|2pi|MESSAGE|2|A graph in polar coordinates of|       r = 1 - cos(t)|END|MENU|1|1|BOX|1|exp(x)|BOX|1|1|END|MENU|1|1|BOX|1|sin(x)|BOX|1|pi|END|MENU|1|1|BOX|1|atn(x)|BOX|1|2|MESSAGE|1|Converges only in [-1,1]|MENU|1|3|BOX|1|1|END|MENU|1|1|BOX|1|log(x+1)|BOX|1|1|END|MENU|1|1|BOX|1|cos(x+pi/3)|BOX|1|pi|END|MENU|1|1|BOX|3|1|1|0|BOX|2|1|1|PAUSE|MENU|1|3|BOX|2|1|-1|PAUSE|MENU|1|3|BOX|2|1|0|END|MENU|1|1|BOX|3|1|4|3|BOX|2|1|1|PAUSE|MENU|1|3|BOX|2|1|-1|PAUSE|MENU|1|3|BOX|2|1|0|END|MENU|1|1|BOX|3|1|4|4|BOX|2|1|1|PAUSE|MENU|1|3|BOX|2|1|-1|PAUSE|MENU|1|3|BOX|2|1|0|END|MENU|1|1|BOX|3|1|1|4.25|BOX|2|1|1|PAUSE|MENU|1|3|BOX|2|1|-1|PAUSE|MENU|1|3|BOX|2|1|0|PAUSE|MENU|1|5|ZOOM|-2|2|-2|2|END|MENU|1|1|BOX|3|1|0|4|BOX|2|1|1|PAUSE|MENU|1|3|BOX|2|1|-1|PAUSE|MENU|1|3|BOX|2|1|0|END|MENU|1|1|BOX|3|0|1|2|BOX|1|1|PAUSE|MENU|1|3|BOX|1|.5|PAUSE|MENU|1|3|BOX|1|-1|END|